SECO PRELIMINARY ENERGY ASSESSMENT REPORT

Star Transit

Star Transit

Tom Henricks Teresa Elliott

Prepared by:

NORESCO, LLC Elvin Ruya, EIT, CEM, BEMP, LEED AP BD+C

March 2022

Table of Contents

Exec	cutive Summary	3
I. –	Facility Descriptions	4
П. –	Recommended Capital Improvements	6
Ш.	Recommended Utility Cost Reduction Measures	7
IV.	Recommended Maintenance & Operation Procedures	10
V .	LoanSTAR Funding for Utility Cost Reduction Measures	10
VI.	Utility Rate Analysis	10
VII.	Energy Accounting.	
	VII.1.1 Utility Providers	12
VIII.	Energy Consumption and Performance	12
	VIII.1.1 Electrical Consumption, Demand, and Load Factor Profiles VIII.1.2 Energy Usage Distribution	12 14
IX.	Water Consumption and Performance	14
Χ.	EnergyStar Portfolio Manager	15
XI.	Emissions Calculations	16
XII.	Energy Management Policy	17
XIII.	Energy Legislation Overview	17
XIV.	Additional UCRM Funding Options	18
XV.	Technical Assistance on Solar Feasibility Analysis and Utility Assessment	21
XVI.	Appendices:	25

Executive Summary

NORESCO was contracted by the Texas State Energy Conservation Office (SECO) to perform a Preliminary Energy Audit (PEA) of the Star Transit facilities in Terrel, TX. These facilities have a combined size of 20,000 square feet (SF) between the administration and parking garage buildings. The purpose of this project is to assess the building's energy use and identify opportunities to lower its greenhouse gas (GHG) emissions and energy consumption. In order to accomplish this goal, an evaluation of the building's historical energy consumption and major energy-consuming equipment has been performed, and a preliminary list of energy conservation measures (ECMs) has been assembled.

Based on utility data received, the facility had an actual annual expenditure for the twelve (12) month period from Aug 2019 to Jul 2020 as shown in Table 1. (Aug 2019 to Jul 2020 period has been selected for the analysis which is the most recent pre-pandemic period to represent typical annual energy use of the facility).

Table 1. Annual Lifergy and Carbon Ose Summary						
Utility	Annual Consumption	Annual Cost				
Electricity (kWh)	121,935	\$ 21 532				
Peak Demand (kW)	36	ΨΖ1,00Ζ				
Metric Tons CO2e (MgCO2e)	54					
Total Energy Cost (\$)		\$ 21,532*				

Table 1. Annual Energy and Carbon Use Summary

*Most recent 12 months available total \$28,689

NORESCO conducted an energy audit site visit in January of 2022. NORESCO identified and estimated the savings and implementation costs for seven (7) ECMs including both capital and UCRM measures.

Because the facility is in the transition phase of upgrading their current fleet from gas powered to electric, two savings scenarios were considered. The first does not consider the electric vehicle (EV) upgrade and solar photo-voltaic (PV) capital improvement project as shown in Table 2; whereas Table 3 reflects this upgrade.

Table 2 Energy and Cost Savings Summary – Based on Current Energy Use

Annual Energy Use	Estimated Annual Energy Savings	Estimated Annual Cost Savings	Estimated Implementation Cost	Simple Payback Period
Electricity	37,593 kWh	\$6,656	\$11,275	1.7

Table 3 Energy and Cost Savings Summary - Based on EV Addition and Solar System Generation

Annual Energy Use Estimated Annual Energy Savings		Estimated Annual Cost Savings	Estimated Implementation Cost	Simple Payback Period
Electricity	172,603 kWh	\$95,143	\$559,979	6.0

Star Transit is encouraged to direct any questions or concerns to either of the following contact persons:

SECO John Kyere, CTCM, MA john.kyere@cpa.texas.gov 512-463-4867 Noresco Elvin Ruya, EIT, CEM, BEMP, LEEP AP BD+C <u>elvin.ruya@noresco.com</u> 832-352-3049

I. Facility Descriptions

The purpose of the onsite survey was to evaluate the facilities major energy consuming equipment in each building including lighting, heating, ventilation, and air-conditioning (HVAC) equipment, miscellaneous equipment, building controls and opportunities to improve the envelope. Evaluating renewable opportunities such as solar panels, EV charging and battery walls were also considered at the request of Star Transit.

The facilities are located at 500 Industrial Blvd, Terrell, TX with a combined size of 20,000 SF. There are two buildings that have been audited highlighted in the Figure 1.

Figure 1.Star Transit Facility Location

I.1.1 Admin Building - Building 1

Figure 2. Admin Building 1

Building Information: Built in 2000, single story, and approximately 10,000 ft². See Figure 2. **Building use:** Closed office, conference/training rooms, breakroom and back of house (BOH) spaces **Operating hours:** 6am – 5:30 pm, Monday-Friday, no operation on weekends

HVAC system: 6 single zone heatpump units ~11 years old. 1 gas-fired backup generator which is currently not in service.

HVAC controls: Narrow thermostat setpoints (~70°F -72°F), no automatic changeover, thermostats are manually set between heating and cooling, and the majority of them have no automatic setback operation.

Lighting Type: Majority of the fixtures consists of 32W, T8 Fluorescent lamps, plus 34 canister fixtures with 26W compact fluorescent lamps (CFLs).

Lighting Controls: Majority of the office spaces have lighting occupancy sensors that shuts the lights off ~30 min after vacancy.

Building Energy Use: Electricity only

I.1.2 Parking Garage (Bus Barn) - Building 2

Figure 3. Parking Building 2

Building Information: Built in 2012, single story, and approximately 10,015 ft². See Figure 3. **Building use**: Parking garage

Operating hours: 3:30am – 6:30 pm, 7 days per week

HVAC system: Unconditioned (i.e., no heating or cooling). Two motorized exhaust fans & outside air dampers operate on a switch. Additional ventilation is provided via roll up doors.

HVAC controls: Motorized dampers operate on a switch. No other controls.

Lighting Type: 32W, T8 Fluorescent lamps and skylights provide lighting to the space. Exterior lights are burned out

Lighting Controls: Interior lights are on 24/7 (24 hours per day, 7 days per week). Majority of the lamps are not providing sufficient light due to lumen depreciation (i.e., they have not been replaced since construction). Exterior lights are burned out and not on any control either.

Building Energy Use: Electricity

Table 4 shows the main space functions in the facility, their size, number of employees and hours of operation.

rabie i opace i anonen and contourie cummary						
Space Function	Floor Area (SF)	Total # of Employees	Hours of Operation			
Office Space	~10,000	27	6am – 5:30 pm, Monday-Friday, no operation on weekends			
Parking Garage	~10,000	No Occupancy, fleet of 14 busses	3:30am – 6:30 pm, everyday			

Table 4 Space Function and Schedule Summary

II. Recommended Capital Improvements

This section is intended to demonstrate any potential improvement that requires high capital and might not be justified solely based on energy cost savings. Some of these measures such as HVAC equipment replacement could be suggested based on life expectancy of the equipment (see APPENDIX A). Solar PV installation could be another capitally intensive project candidate which typically shows long payback periods. Lastly, replacement of broken or unutilized systems that haven't been contributed to the energy bills might be considered for this category. By replacing these non-functioning systems, code requirements or building/occupant needs will be met while there will be penalties due to consumption increase in the utility bills.

Solar PV System Implementation

Star Transit is in the process of converting their current bus fleet to EV's (electric vehicles). Even though the facility's current electricity usage is not high, with the charging stations their consumption will increase dramatically. Also, the site plan and building roof structure for the PV system installation needs to be considered. Table 5 is a summary of the estimated electricity needed to power the 14 buses in their fleet.

Table 5 Electricity Use Summary for EV Bus Fleet

# bus	Mile/day	Operation hours	Fuel (kWh/mi)	Consumption/bus (kWh/day)	Total Fleet Consumption (kWh/day)	Battery Capacity for each bus (kWh)	Annual EV Demand (kWh)
14	100	12	0.77	77	1078	118	388,080

In order to offset the current electricity and additional EV charging demand, a solar PV system is being considered. However, EV charging would happen during evening hours (6pm-5am). Battery storage could be an off-grid solution, but the magnitude of the electrical storage needed and stock issues, makes this option not feasible. Our recommended solution is a grid-tied operation. Instead of utilizing battery backup, the grid will regulate the connection between demand and supply.

Two scenarios have been analyzed in terms of electricity offset and simple payback period. Material, installation, and operational costs have been considered only for the simple payback calculations. Additional costs such as structural evaluation, hiring an electrician, and charging station connections are excluded for the analysis.

The 1st scenario is a roof mounted application for both buildings. Based on the location and building specifics, solar production is estimated and shown in Figure 4 and proposed roof layout in Figure 5. Additional utility analysis has been performed to optimize the electricity rate to achieve a lower payback period.

Figure 4 Scenario 1 Demand vs Production

Figure 5 Solar Panel Layout for Scenario 1

The 2nd scenario shown in Figure 6 and Figure 7 consists of both roof and ground mounted options. Since charging stations will be installed in building 2, roof for building 2 and field space around it has been considered

for the evaluation. Due to the specifics of the site, full offset with solar is not feasible because EV charging will require purchasing electricity at night- since battery storage is not an option.

Figure 6 Scenario 2 Demand vs Production

Figure 7 Solar Panel Layout for Scenario 2

Table 6 Capital Measure - Solar System

Facility	Implementation Cost (\$)	Estimated Energy Savings (kWh/yr)	Estimated Cost Savings/yr	Simple Payback (yrs)
Building1+2	\$548,705	129,263	\$87,423	6.3
Building2 + Field (next to Building2)	\$903,496	*629,002	\$89,560	10

*Annual energy consumption is met and there is 107,415 kWh excess energy

Details of the Solar System analysis and utility assessment can be found in *Chapter XV - Technical* Assistance on Solar Feasibility Analysis and Utility Assessment chapter of this report.

Exterior Lights – Building 2

There are 4 exterior lights on the barn building whose lamps are burned out. It is assumed that the current lamps are 150W metal halide and when they were still in operation, according to the building staff they were on 24/7. Four (4) 80W LED wall pack fixtures with photocell controls are recommended. Photocell control will reduce the operation to 11 hours per day and LED lamps will consume less energy and have much longer rated lives.

Table 7 Building 2 Exterior Lights Savings

Facility	Implementation Cost (\$)	Estimated Energy Savings (kWh/yr)	Estimated Cost Savings/yr	Simple Payback (yrs)
Building 2	\$480	3,971	\$734.67	0.7

III. Recommended Utility Cost Reduction Measures

This section is intended to show potential energy cost saving opportunities which can also be justified with financial analysis. Utility Cost Reduction Measure (UCRM) projects identified during the preliminary analysis are detailed below.

UCRM 1 – Building 1 Lighting Retrofit

Fluorescent T8 lighting fixtures are the most common for each building. It is recommended to replace T8 lamps with new light emitting diode (LED) lamps throughout the buildings. Besides significant reduction in the lighting, cooling, and fan energy usage, LED fixtures have much longer rated life, better color rendition index (CRI) range and similar correlated color temperature (CCT) as shown in the Table 8 below.

NORESCO Sustainability Services

Table 8 Fixture Performance Comparison

Technology	CRI	ССТ(К)	Life (Hours)
Fluorescent	70-85	3,000-6,000	10,000
LED	70-100	3,000-6,000	100,000

For the calculations, lights in building 1 are assumed to be on an average of 11 hours/day for the weekdays and off during weekends. Material and labor costs are included in the payback calculations.

Table 9 UCRM 1 LED Retrofit

Facility	Implementation Cost (\$)	Estimated Energy Savings (kWh/yr)	Electrical Heating Energy Cost Penalty/yr	Estimated Cost Savings/yr	Simple Payback (yrs)
Building 1	\$3,641	19,328	\$245.51	\$3,330	1.1

UCRM 2 - Building 1 Interior Lighting Controls

Interior lights at building 1 are fluorescent and the majority of them are controlled with passive infrared (PIR) sensors which have a 30 min delay as required by the energy code. Because fluorescent lamps experience wear and tear on startup, it is wiser to reduce the number of operating cycles to maintain a longer lamp life. However, this could be mitigated by using long-life lamps such as LED which allows time delays as short as 1-5 minutes. It is recommended to update the time settings of the sensors after the LED upgrade in those rooms.

Even though small offices throughout the building have PIR sensors, open offices, common rooms, corridors are currently on manual switches. Vacancy sensors are recommended for restrooms and other back of house spaces (Vacancy sensors are occupancy sensors that must be turned on manually and then turn off lights automatically. The manual on feature prevents automatic powering on of light circuits when not desired). Spaces controlled by manual switches are only considered for the calculations (12 hr/day for 5-day operation is assumed) for Building 1.

Table 10 UCRM 2 Building 1 Interior Lighting Control

Facility	Implementation Cost (\$)	Estimated Energy Savings (kWh/yr)	Electrical Heating Energy Cost Penalty/yr	Estimated Cost Savings/yr	Simple Payback (yrs)
Building 1	\$1,806	4,144	\$52.65	\$714	2.5

UCRM 3 Building 2 Interior Lighting Retrofit and Controls

There are 10 skylights in Building 2 which provide a significant amount of daylighting to the barn space. Most of the lighting fixtures are located right under the skylight which enables retrofitting the T8's with new LED fixtures that have an integrated (fixture by fixture) control option for both occupancy and daylight. By doing so, rewiring all of the fixtures would be avoided and more savings will be achieved due to less wattage and less operating hours.

24/7 operation is assumed for the current operation (15% lights assumed to be not on due to burn out) and 40% reduction is taken into account for the proposed case based on ASHRAE 90.1 and California Title 24 requirements on parking garage lighting controls.

Facility	Implementation Cost (\$)	Estimated Energy Savings (kWh/yr)	Estimated Cost Savings/yr	Simple Payback (yrs)
**Building 2	\$2,400	6,433	\$1,190	2.0

Table 11 UCRM 3 Building 2 Interior Lighting Retrofit and Controls

UCRM 4 Improve Thermostat Controls

Existing wireless manual changeover thermostats have a small temperature deadband (~70°F -72°F). Because the changeover is manual, energy waste is assumed to be significant during the swinging seasons. It was also observed that the setback controls have not been well utilized for the unoccupied times. Lastly, placement of thermostats results in comfort issues at the closed offices. The core offices experience noticeably higher temperatures than perimeter offices in winter. In order to address both energy and comfort issues, auto changeover, Wi-Fi connected smart thermostats are recommended which works with smart temperature sensors that detect the temperature of a given room and prioritize heating or cooling needs. Calculations assume setpoints shows below:

Table 12 Thermostat Setpoint Assumptions

Baseline	Setpoints		P	roposed Setpoints	
Heating (F)	Cooling (F)	Occupied Heating (F)	Heating Setback (F)	Occupied Cooling (F)	Cooling Setback (F)
70	72	70	68	75	80

Table 13 UCRM 3 Improve Thermostat Controls

Facility	Implementation Cost (\$)	Estimated Energy Savings (kWh/yr)	Estimated Cost Savings/yr	Simple Payback (yrs)
Building 1	\$3,547	7,687	\$1,422	2.5

UCRM 5 Utility Rate Plan Change

Anomalies in the current utility rate structure have been determined during the preliminary analysis. On average, Star Transit is charged \$0.19/kWh (for the most recent 12 months) for their electricity usage which is much higher than a typical small commercial facility in TX (see in Figure 8).

Figure 8 Star Transit Energy Breakdown

Currently Star Transit is on a month-to-month "Business Power Plus Flex Plan" with Reliant Energy. Our market research demonstrated that they are eligible for a much lower rate which would save them up to \$100,135.06 over 5 years (see Figure 9) if they make the necessary updates to their plan.

Term	\$/kWh	Annual Savings	Term Savings
12 Months	\$0.07266	\$17,680.91	\$17,680.91
24 Months	\$0.06488	\$18,853.21	\$37,706.41
36 Months	\$0.06135	\$19,385.11	\$58,155.33
48 Months	\$0.05931	\$19,692.50	\$78,770.00
60 Months	\$0.05709	\$20,027.01	\$100,135.06

Figure 9 Proposed Utility Plan Options

IV. Recommended Maintenance & Operation Procedures

Good maintenance and operation procedures significantly improve operating economy, equipment life, and occupant comfort. Generally, maintenance and operation procedural improvements can be made with existing staff and budgetary levels. Below are typical maintenance and operation procedures that have energy savings benefits. The following maintenance and operation procedures should be encouraged and continued to ensure sustainable energy savings.

Description	Recommended Frequency
Inspect filters – Replace as necessary	Quarterly
Re balance airside system	3-5 years
Inspect electrical connections and tighten as necessary	Annually
Check for proper function of all dampers (outside air, return air,	Semi-Annual
spill, etc.)	
Ensure tight shut-off of dampers	Semi-Annual
Lubricate all moving parts	Semi-Annual
Clean and check condensate pans, drains and traps	Semi-Annual

V. LoanSTAR Funding for Utility Cost Reduction Measures

Texas LoanSTAR program is a great alternative for funding options for UCRM implementation. The program was initiated by the Texas Energy Office and approved by the U.S. Department of Energy (DOE). The program maximum loan term for all projects is 15 years (simple payback period). LoanSTAR finances both energy and water efficiency measures and systems commissioning in existing facilities at a very low interest rate. Typical energy savings measures include, but not limited to, energy efficient lighting systems, high efficiency HVAC systems, and energy recovery systems. Lighting retrofits are part of the recommended measures for this project. Additional information on LoanStar Revolving Loan Program and application form can be found in the following links.

https://comptroller.texas.gov/programs/seco/funding/loanstar/

LoanSTAR Revolving Loan Program

LOANSTAR TECHNICAL GUIDEBOOK

VI. Utility Rate Analysis

The facilities surveyed comprised a total gross area of approximately 20,015 square feet. Annual electric bills for the buildings surveyed were approximately \$21,532 for the 12-month period in Aug 2019-Jul 2020 and \$26,541 for the 12-month period in Aug 2020-Jul 2021.

Aug 2019 - Jul 2020 period has been selected to minimize the possible operational anomalies caused by the COVID-19 pandemic.

VI.1.1 Rate Structure

Star Transit has been on a month-to-month Business Plus Flex Plan with Reliant Energy. Due to being month to month subscription, they have different rates for each month. Demand and consumption are on a blended rate. An average of \$0.18/kWh has been calculated for the 27 months.

Dete	Energy	Demand		\$/kWh
Date	(kWh)	(kW)	Cost (\$)	
Aug-19	12,127	43	\$1,732.88	\$0.1429
Sep-19	11,403	39	\$1,711.25	\$0.1501
Oct-19	10,397	37	\$1,579.65	\$0.1519
Nov-19	9,930	85	\$2,122.02	\$0.2137
Dec-19	10,211	85	\$2,153.92	\$0.2109
Jan-20	11,289	71	\$2,144.84	\$0.1900
Feb-20	11,428	83	\$2,284.24	\$0.1999
Mar-20	9,061	76	\$1,903.47	\$0.2101
Apr-20	7,827	35	\$1,354.08	\$0.1730
May-20	6,960	27	\$1,169.93	\$0.1681
Jun-20	9,278	32	\$1,498.95	\$0.1616
Jul-20	12,024	36	\$1,876.65	\$0.1561
Aug-20	10,687	35	\$1,727.11	\$0.1616
Sep-20	10,825	38	\$1,832.01	\$0.1692
Oct-20	7,451	28	\$1,325.44	\$0.1779
Nov-20	8,334	51	\$1,671.91	\$0.2006
Dec-20	11,318	91	\$2,504.57	\$0.2213
Jan-21	16,040	90	\$3,219.78	\$0.2007
Feb-21	18,679	97	\$3,651.63	\$0.1955
Mar-21	10,692	76	\$2,352.85	\$0.2201
Apr-21	7,251	50	\$1,495.47	\$0.2062
May-21	9,424	51	\$1,911.61	\$0.2028
Jun-21	13,618	38	\$2,343.92	\$0.1721
Jul-21	14,520	41	\$2,505.19	\$0.1725
Aug-21	14,447	39	\$2,473.78	\$0.1712
Sep-21	15,304	36	\$2,593.12	\$0.1694
	44.054	20	¢4 004 70	C A Z Z Z

Toble 15 Electric Date Ar

The energy use index (EUI) represents a facility's annual energy usage per square foot; it is measured in thousands of British thermal units (BTUs) per square foot per year (kBtu/ft²/Year). Similarly, energy cost index (ECI) is measured as cost per square foot per year (\$/ft²/Year). The EUI and ECI for facilities surveyed are summarized below:

Facility Name	Building Size (ft2)	Electricity (kWh/yr)	Electricity (kWh/ft ² /yr)	Electricity Cost/yr (\$)	EUI (kBtu/ft²/yr)	ECI (\$/ft2/yr)
Building 1+2	20,015	121,935	6.09	\$ 21,532	20.79	\$1.08

VII. Energy Accounting

VII.1.1 Utility Providers

Reliant Energy provides electricity to the facility. Water and sewer are provided by City of Terrell.

VIII. Energy Consumption and Performance

VIII.1.1 Electrical Consumption, Demand, and Load Factor Profiles

The facility's electrical consumption and local cooling degree days (CDD) and heating degree days (HDD) for the 27 months from January 2018 to December 2020 are presented in Figure 10.

The facility's electrical demand and consumption for the 27 months from Aug 2019 to Oct 2021 are presented in Figure 11.

The facility's electrical load factor for the 27 months from Aug 2019 to Oct 2021 is presented in Figure 12.

Figure 12. Electricity use and Load Factor Profile

The electrical load factor is equal to the electrical consumption (kWh) divided by the peak load (kW) over a specified time period and is calculated as follows:

 $Load \ Factor = \frac{Monthly \ Consumption \ (kWh)}{Peak \ Demand \ (kW) \ \times Days \ per \ Month \ \times 24 \ hours \ per \ day}$

A high load factor means power usage is relatively constant. A low load factor indicates a brief period of high demand is incurred. To service that peak, generating capacity is sitting idle for long periods, thereby imposing higher costs on the system. Electrical rates are designed so that customers with a high load factor are charged less overall per kWh. Buildings with low load factors (i.e. <50%) may be good candidates for electrical demand management improvements.

The overall electricity and electrical demand are high during summer times to meet the cooling load but heating period shows the opposite behavior.

VIII.1.2 Energy Usage Distribution

The building utilizes electricity to meet its end use energy requirements.

IX. Water Consumption and Performance

Building 1 has only 2 restrooms and a breakroom including total of four-bathroom sinks, one kitchen sink, five water closets and one urinal, which are the main source of water consumption (service water) for the whole facility. In Sep 2021, the facility installed a car wash station for the fleet which can be seen in the graphic below:

Usage (gallons)

Figure 13 Water Consumption Profile

Due to limited hot water use and the car wash station, there are no recommended water efficiency measures for the facility.

X. EnergyStar Portfolio Manager

NORESCO has created an account for Star Transit and uploaded the utility data into EnergyStar Portfolio Manager. Office building type has been selected for Building 1 and parking garage for Building 2.

Facilities energy data in Energy Star Portfolio Manager can be accessed via the following link:

https://portfoliomanager.energystar.gov/pm/login.html

ENERGY STAR Portfolio Manager

Welcome to Portf Helping you track and improve o Username: Password:	Topio Manager energy efficiency across your entire portfolio of properties. Startransit Intervol my password. Intervol my username. Sign In	ENERGY STAR Buildings Homepage Take a Training Learn More About Portfolio Manager Learn More About Portfolio Manager These links provide more information from ENERGY STAR and are not available in French.

Figure 14 Portfolio Manager Login

Username: Startransit Password: Startransit22!

				/ Change
500 industrial blvd terrell TX 75160 Map It	Not co ENER Certifi	urrently eligible for RGY STAR ication	Weather Norr Source EUI (F	malized <u>⊮</u> kBtu/ft²) ≊
Portfolio Manager Property ID: 19833750 Year Built: 2000			Current: (39.12% lower than	70.8 median.)
			Baseline: (50.68% lower than	57.4 median.)
ummary Details Energy Water Was	ste & Materials Goals	Design		
Source EUI Trend (kBtu/ft²)			Chang Chang	<u>ge Metrics</u> g <u>e Time Peric</u>
Change Metric	Metrics Summary			
100	Metric 🖊	Jul 2020 (Energy 🖊 Baseline)	Sep 2021 (Energy / Current)	Change 🛛
	ENERGY STAR Score (1- 100)	Not Available	Not Available	N/A
50	Source EUI (kBtu/ft²)	58.1	70.8	12.70 (21.90%)
0 2011 2012 2015 2017 2010 2021	Site EUI (kBtu/fl²)	20.7	25.3	4.60 (22.20%
(Chart current as of 02/28/2022 Refresh Chart	Energy Cost (\$)	21,549.81	28,269.71	6719.90 (31.20%)
03.55 FW (31)	Total GHG Emissions Intensity (kgCO2e/ft²)	2.4	2.9	0.50 (20.80%
	Water Use (All Water Sources) (kgal)	Not Available	Not Available	N/A
	Total Waste (Disposed and	Not Available	Not Available	N/A

Figure 15 Portfolio Manager Building Profile

Figure 16 Portfolio Manager Facility Energy Profile

Additional Energy Star Portfolio Manager information could be found in these links:

Portfolio Manager | ENERGY STAR

Benchmark Your Building Using ENERGY STAR® Portfolio Manager® | ENERGY STAR Buildings and Plants | ENERGY STAR

XI. Emissions Calculations

Table 17 includes the conversion factors used to calculate the estimated GHG emission savings in Figure 17.

Fuel Type	Greenhouse Gas	Quantity	Value	Unit
Electricity	CO2	Mass GHG/Energy	979.062	lb GHG/MWh
Electricity	CH4	Mass GHG/Energy	0.069	lb GHG/MWh
Electricity	N2O	Mass GHG/Energy	0.01	lb GHG/MWh

Table 17 GHG Emission Conversion Factors

Because the building only has electricity as energy source, other sources are not considered for the calculations. Proposed case calculations include UCRM1, 2, 3, and 4 only.

Figure 17. Annual Greenhouse Gas Emissions Summary

XII. Energy Management Policy

Star Transit does not currently have an energy management policy or a dedicated energy manager who would take the lead on planning or implementing the energy & water saving measures. However, they already have taken initiatives on adopting new technologies such as EV (electric vehicle) for the entire fleet which in return will benefit their operation and the environment in long-term. The purpose of having such a policy is to advocate energy efficiency, improve energy & cost-effectiveness, reduce waste and greenhouse gas emissions and to contribute to bigger sustainability goals.

It is recommended to consider the following steps when establishing a plan:

- ✓ Commitment
- ✓ Performance benchmarking/assessment
- ✓ Goal Setting
- ✓ Prioritize strategy initiatives
- ✓ Plan for funding
- Execution and Monitoring

XIII. Energy Legislation Overview

History of legislation for public sector energy reporting goes back to 2011 (Texas Emissions Reduction Plan). It includes fundamental changes in energy usage to comply with Clean Air Act standards. Senate Bill 12 effective Sep 1st, 2007 extended the timeline for a 5% annual reduction goal to six years. In 2011, Senate Bill 898 superseded SB12, and extended the scope of emissions plan. It required each political subdivision, institution of higher education, or state agency to establish a goal to reduce electrical consumption by at least five percent annually for ten years beginning September 1, 2011. Each entity must report to the State Energy Conservation Office (SECO) regarding the entity's efforts to meet the goal and achieved progress. Form#50-816 (2011) was replaced with a new online energy reporting form in 2019 found at the web link below.

https://comptroller.texas.gov/programs/seco/reporting/local-gov.php

Additional UCRM Funding Options XIV.1.1 Federal Technical Assistance Programs XIV.

Program	Description	Citation		
Air Pollution Control Program (2007)	Assists state, local, and tribal agencies in planning, developing, establishing, improving, and maintaining adequate programs to prevent and control air pollution and implement national air quality standards. Air quality affects energy efficiency because reduced energy use reduces electricity production, a source of air pollution.	42 USC 7405		
Alternative Transportation in Parks and Public Lands Program (2005)	Provides funds to support planning and capital expenses for alternative transportation systems in parks.	49 USC 5320		
Congestion Mitigation and Air Quality (CMAQ) Improvement Program (2007)	Provides funding to states' departments of transportation, municipal planning organizations, and transit agencies for projects and programs that reduce transportation-related emissions in air quality nonattainment and maintenance areas.	23 USC 149		
Clean Cities	Promotes the energy, economic, and environmental security of the United States by supporting local initiatives to adopt practices that reduce the use of petroleum in the transportation sector.			
Clean School Bus USA	Reduces children's exposure to harmful diesel exhaust through a public-private partnership that limits school bus idling, implements pollution reduction technologies, improves route logistics, and switches to clean fuels.			
SmartWay Transport Partnership	Assists the ground freight industry in quantifying emissions and creating a plan to reduce fuel consumption.			
State Energy Program (SEP) Funding	Provides grants to states to assist in designing, developing, and implementing renewable energy and energy efficiency programs.			
Voluntary Airport Low Emission (VALE) Program (2007)	Reduces ground level emissions at commercial service airports located in designated ozone and carbon monoxide air quality nonattainment and maintenance areas	49 USC 40101		

Table 12: Federal Technical Assistance Programs in the Transportation Sector

Source: AFDC 2009

Policy	Description	Citation
Advanced Technology Vehicle (ATV) Manufacturing Incentives (2007)	Direct loans for up to 30% of the cost of re-equipping, expanding, or establishing manufacturing facilities in the U.S. used to produce qualified ATVs or ATV components.	PL 110-140, Section 136
Idle Reduction Equipment Excise Tax Exemption (2008)	Qualified on-board idle reduction devices and systems are exempt from the 12% retail excise tax imposed on heavy-duty trucks and trailers.	PL 110-343, Section 206, 25 USC 4053
Heavy-Duty Hybrid Electric Vehicle (HEV) Tax Credit (2007)	A tax credit of up to \$18,000 is available for the purchase of qualified heavy-duty HEVs with a gross vehicle weight rating of more than 8,500 pounds.	26 USC30B
Light-Duty HEV and Advanced Lean Burn Vehicle Tax Credit (2007)	A tax credit for qualified light-duty HEVs and advanced lean burn technology vehicles placed in service after December 31, 2005. The credit begins to phase out in the second quarter following the calendar quarter in which at least 60,000 of a manufacturer's qualifying HEVs and/or lean burn passenger automobiles and light trucks have been sold.	26 USC30B
High Occupancy Vehicle (HOV) Lane Exemption (2007)	Allows states to exempt certified low emission and energy-efficient vehicles from HOV lane requirements.	23 USC 166
Qualified Plug-In Electric Drive Motor Vehicle Tax Credit	A tax credit for the purchase of a new qualified plug-in electric drive motor vehicle that draws propulsion using a traction battery that has at least four kilowatt hours of capacity, uses an off-board source of energy to recharge the battery, and meets specified emission standards. The credit will begin to be phased out in the second quarter following the calendar quarter in which a minimum of 250,000 qualified plug-in electric drive vehicles have been sold for use in the U.S. This tax credit expires December 31, 2014.	26 USC 30D
Pollution Prevention Grants Program (2007)	Supports state and tribal technical assistance, education, and research programs that help businesses and industries identify better environmental strategies and solutions for complying with federal and state environmental regulations.	42 USC 13104

XIV.1.2 Federal Tax Incentives

Table 11: Federal Tax Incentives Related to Energy in the Transportation Sector

Source: AFDC 2009

XIV.1.3 PACE (Property Assessed Clean Energy) Programs

TX-PACE is an alternative financing program that helps building owners to have a low-cost, long-term financing options for energy and water efficiency projects.

https://www.aacog.com/735/Texas-Property-Assessed-Clean-Energy-PAC

XIV.1.4 Performance Contracting via ESCO (Energy Services Company)

Facility owners can utilize the ESPC (energy savings performance contracting) process to conduct energy audits. The contracted ESCO develops individual and grouped savings measures that can be included in the ESPC project. Short or long payback periods or renewable energy systems can be eligible if they're bundled under one contract. The most common financing option for government ESPC projects is the municipal tax-exempt lease-purchase agreement. Internal financing or bonds are other known types as well. Once the savings measures are implemented, the ESCO continues monitoring the savings through M&V (measurement and verification) process.

XIV.1.5 Utility Net Metering & Solar Buyback programs

When Solar PV systems are considered for a project, utility policies and incentives become the most crucial matter. If an off-grid solution is not feasible, a grid-tied option becomes the only solution and the grid should be able to regulate the excess production vs purchase which is called net metering. Some utility providers offer credits for excess kWh up to total usage on the overall account for each month. They also provide fixed low rates for long term subscriptions which mitigates being affected by the market fluctuations.

XV. Technical Assistance on Solar Feasibility Analysis and Utility Assessment

Star Transit is converting their current fleet to EV (electric vehicle). They requested an evaluation of a potential solar generation system to offset the energy use of the existing facilities and to offset the EV charging. They also requested a utility assessment of both their historical utility bills and potential participation in a net metering program if solar system installation is feasible.

Star Transit facility is located adjacent to an open field where neither of the building's roofs are shaded by other buildings or trees as shown in Figure 18. They also own an open field right next to the parking lot which would allow installing a ground mounted solar farm if needed.

Figure 18 Satellite View of the Facility

Star transit operates 14 buses daily, and each bus travels 100 miles/day. When these buses are replaced with EV, their estimated energy consumption to charge the whole fleet based on the selected bus is 1,078 kWh/day (see EV Star bus and its associated technical data are shown in Figure 19 and Figure 21:

Figure 19 Selected EV Bus

Figure 20 Charging Station Example

Building 2 currently operates as a parking garage for the fleet. It is assumed that new vehicles will also use that area for parking and for charging. If traditional Level-2 charging is installed, each bus will have its own NORESCO Sustainability Services Page 21

charger totaling 14 stations. Required charging station is shown in Figure 20 and EV consumption details shown in Table 18.

Table 18 EV Consumption Details

# bus	Mile/day	Operation hours	Fuel (kWh/mi)	Consumption/bus (kWh/day)	Total Fleet Consumption (kWh/day)	Battery Capacity for each bus (kWh)	Annual EV Consumption (kWh)
14	100	12	0.77	77	1078	118	388,080

TECHNICAL DATA

CLASSIFICATION

Heavy-duty class 4

GVWR

14,330 lbs.

PAYLOAD CAPACITY * 4,331 lbs.

LENGTH 25 feet

WIDTH

79.5 inches

HEIGHT * 106.5 in, 116.5 inches overall, 75 in (interior)

WHEELBASE 170 inches

APPROACH & DEPARTURE ANGLES 14.7 (front), 12.4 degrees (rear)

CARGO VOLUME AREA (behind driver to rear) 189 long, 70 wide, 74 inches high

MAX SEATING CAPACITY (w/driver) 20 seating, 6 rows, 17.5-inch-wide seats

SEATING CONFIGURATIONS * Front facing, perimeter, 4-6 fold-up, 2 ADA

ADA LIFT (BRAUNABILITY) Side or rear wheelchair lift options FRAME / BODY / ROOF

Steel

PASSENGER DOOR Electric

TIRES 205 / 75R / 17.5 (gty. 6)

EMERGENCY EXITS Hatch, window, door

HVAC 39,239 BTU/h, front, rear, electric

CAN BUS, J1939

ALTOONA CERTIFIED Yes, 92.2 score, 2nd highest score in history

CARB CERTIFIED

LUGGAGE CARGO AREAS Rear cargo, luggage rack 50,60,70 in. long REAR CARGO LUGGAGE CAPACITY

102 cubic feet (38x70x66)

BATTERY Voltage: 576 V, Chemistry: LiFePo4

BATTERY CAPACITY

RANGE *

153 miles FUEL ECONOMY *

48 mpge, 0.77 kWh/mi, 1.3 mi/kWh

68 mph

MOTOR POWER 150 kW max

TRANSMISSION Direct Drive, No Transmission AUTONOMOUS INTEGRATION * Perrone Robotics (option)

DESIGN LIFE 10 years LCFS EER VALUE * †

HDV, 5.0 EER, 1 credit every 740 kWh

CHARGING * (AC/DC)

LEVEL-2, J1772 11 kW, 11 hrs

DCFC, CCS-1 61 kW, 2 hrs

WIRELESS DC * (option) 60 kW, 2 hrs

VEHICLE VOUCHER REBATES * E-mail: grants@greenpowermotor.com

BUY AMERICA *

† California region only

* Specification can vary By region, application, availability

Figure 21 EV Star Technical Data

EV charging electricity use will be on average 3 times higher than the monthly building utility demand. Thus, utility program options need to be constructed around the EV addition and possible offset via Solar PV arrays. In the Texas market, solar plans and rebates are not as common for commercial buildings as they are for residential buildings. Our research shows that current the electricity provider of Star Transit does not allow net metering, nor they do provide any incentives/rebates. However, there are other providers which do have specific plans for small commercial businesses like Star Transit.

Energy Demand Comparison (kWh)

Figure 22 Building Energy vs EV Energy Comparison

Another important detail for the net metering plan is the grid integration. During the daytime, the system will produce more energy than the building uses, the extra electricity will need to flow to the grid as excess generation. The opposite scenario will happen as the electrical fleet is charging during evening/night hours when there is no solar generation; this required electricity will need to be purchased from the grid. So, potential solutions include:

- ✓ A utility plan that offers fixed rates both for purchase and sell, so there are no penalties for the hours that's just production but not enough consumption
- ✓ If utility plans do have penalties for excess generation, then a smaller PV array could be pursued instead of offsetting monthly generation

Our market research shows the first option is feasible which allows excess generation to flow back to the grid and enables selling it at a fixed price which can be used as a credit for upcoming months. Thus, we have considered utilizing both buildings and both sides of the roofs (north and south) in the analyses we conducted. See Figure 23 and Figure 24 for the areas considered for the roof installation.

Figure 23 Building 1 Roof for PV Layout

Figure 24 Building 2 Roof for PV Layout

As it was demonstrated in section Solar PV System Implementation, we detailed out 2 scenarios. The 1st scenario consists of utilizing both roofs for the panel installation, which has a DC system size of 283.3 kW (Figure 25), and the 2nd scenario includes roof mount on building 2 and ground mount for the field around building 2 with a total of 427.1 kW DC system size(Figure 26). Full coverage of the roof area which will block

the use of existing skylights and panels will be mounted on the roof directly without any additional tilt (current roof angle is around 10%) and ~15% system losses are considered in the calculations.

Figure 25 Scenario 1 Consumption vs Production Figure 26 Scenario 2 Consumption vs Production

The considered net metering program for the analysis assumes a fixed \$0.04945/kWh for the purchase and \$0.03/kWh for the excess energy credit rate. Estimated cost savings considers \$0.18/kWh rate that the facility currently pays.

Facility	Implementation Cost (\$)	Estimated Energy Savings (kWh/yr)	Estimated Cost Savings/yr	Excess Generation (kWh/yr)	Nighttime Demand (kWh/yr)	Simple Payback (yrs)
Scenario 1	\$548,705	129,263	\$82,460	258,817	388,080	6.7
Scenario 2	\$903,496	*629,002	\$89,560	495,495	388,080	10

Table 19 Energy & Cost Comparison for Both Scenarios

*Includes excess energy production, thus its higher than the actual energy consumption value.

A ballpark material & implementation cost is used in the calculations; however, there are several quotes received which could be considered during actual bidding phase of the project (see Table 20 and Table 21) Annual total consumption is estimated as 521,587 kWh including building and EV consumption.

Table 20 Roof Only Vendor Quotes

Predicted Annual	Installer	System	Size	Annual Production	Turnkey Price (\$)	Price/Watt (\$)
Consumption		(kW)		Estimate (kWh)		
(kWh)						
521,587	Freedom Solar	287.28		375,565	\$548,705	\$1.91
521,587	NuWatt	287.04		336,900	\$473,616	\$1.65
521,587	GreenSun	174		244,383	\$421,080	\$2.42
521,587	Srinergy	108.5		150,729	\$325,350	\$3.0

**Installers are ordered based on the quote receiving date.

Table 21 Roof and Ground Vendor Quotes

Predicted Annual Consumption (kWh)	Installer	System (kW)	Size	Annual Production Estimate (kWh)	Turnkey Price (\$)	Price/Watt (\$)
521,587	Freedom Solar	574.98		808,633	\$1,177,848	\$2.05
521,587	GreenSun	334		469,099	\$1,085,500	\$3.25

Lastly, Star Transit wanted to get guidance on phases and tasks of a typical solar project. The scope of this TA only includes preliminary system sizing and layout, utility assessment and preliminary feasibility analysis of a solar PV project. However, Table 22 outlines the remaining tasks to be considered for the full scope of a solar project from roof structure/geotechnical assessments to specification development and construction administration.

Phase	Task				
System Selection	Preliminary system sizing and layout				
System Selection	Preliminary bidding				
System Selection	System size selection				
System Selection	Utility Analysis				
System Selection	Preliminary structural evaluation (roof mounted option)				
System Selection	Preliminary geotechnical evaluation (if ground mounted option is pursued				
	Final Report				
Bidding/design	Solar vendor RFP/scorecard development				
Bidding/design	Solar vendor selection				
Bidding/design	Design firm bidding (Proposal review/scorecarding)				
Bidding/design	Design Firm selection				
Design	Design oversight				
Design	RFI, meetings support				
Design	100% Design Drawing, 100% Construction Drawing, and IFC Sets				
Bidding/spec	Electrical spec development				
Bidding/spec	Solar panel spec development				
Bidding/construction	RFP/scorecard development				
Bidding/construction	Proposal review/scorecarding				
Bidding/construction	Contract negotiation				
Bidding/construction	Electrical contractor selection				
Construction	Construction oversight, Permitting, Commissioning				

Table 22 Phases and Tasks of a Typical Solar Project

XVI. Appendices:

APPENDIX A

ASHRAE Equipment Life Expectancy chart

ASHRAE is the industry organization that sets the standards and guidelines for most all HVAC-R equipment. For additional info about ASHRAE the website is <u>www.ashrae.org</u>.

Median Years	Equipment Item	Median Years	Equipment Item	Median Years
	Air terminals		Air-cooled condensers	20
10	Diffusers, grilles, and registers Induction and fan coil units	s 27 20	Evaporative condensers	20
15 15	VAV and double-duct boxes	20	Insulation	
15	Air washers	17	Molded Blanket	20 24
	Ductwork	30		24
15	Dampers	20	Pumps	
15 19	Eane	20	Base-mounted Pipe-mounted	20 10
	Centrifugal	25	Sump and well Condensate 15	10
15 15	Axial Propeller Ventilating roof-mounted	20 15 20	Reciprocating engines	20
24 (20)	Coils		Steam turbines	30
25 (25)	DX, water, or steam	20	Electric motors	18
35 (30)	Electric	15	Motor starters	17
21	Heat Exchangers Shell-and-tube	24	Electric transformers	30
	Designed to a second second	~~	Controls	
18	Reciprocating compressors	20	Pneumatic	20
	Packaged chillers		Electronic	15
13	Reciprocating	20	Value actuatore	
20	Absorption	23	Hydraulic	15
	Cooling towers		Pneumatic	20
10 25	Galvanized metal Wood Geramic	20 20	Sell-Contained	10
	Median Years 10 15 15 15 15 15 19 15 15 19 15 15 24 (30) 25 (25) 35 (30) 15 21 18 13 20 10 25	Median Years Equipment Item Air terminals Air terminals 10 Diffusers, grilles, and registers Induction and fan coil units 15 VAV and double-duct boxes 15 Air washers 15 Ductwork 15 Dampers 19 Fans Centrifugal Axial 15 Propeller 15 DX, water, or steam 24 (30) Coils 25 (25) DX, water, or steam 15 Heat Exchangers 21 Shell-and-tube 18 Reciprocating compressors 13 Centrifugal 20 Absorption Cooling towers Cooling towers 10 Galvanized metal 25 Wood Ceramic Cooling towers	Median YearsEquipment ItemMedian YearsAir terminals10Diffusers, grilles, and registers 2015VAV and double-duct boxes15VAV and double-duct boxes15Air washers15Air washers15Ductwork15Dampers19Fans15Centrifugal Propeller15Axial Propeller15DX, water, or steam 1520DX, water, or steam 1521Shell-and-tube242423Asil-and-tube242025DX, water, or steam 2021Shell-and-tube22Absorption13Cooling towers20Cooling towers10Galvanized metal Wood Ceramic25Wood Ceramic26Mathine double-steam Adouble	Median YearsEquipment ItemMedian YearsEquipment ItemAir terminalsAir cooled condensers10Diffusers, grilles, and registers Induction and fan coil units 202015VAV and double-duct boxes2015VAV and double-duct boxes2015Air washers17Ductwork301715Dampers2015Dampers2015Dampers2015Axia2016Centrifugal2517Molded Blanket18Centrifugal2524 (30)Coils25DX, water, or steam2026DX, water, or steam2027Heat ExchangersElectric motors21Abel-and-tube2422Propeller1518Reciprocating compressors2013Conting towers2013Cooling towers2014Contrifugal2320Absorption2321Galvanized metal2022Wood2023Modra staters24Galvanized metal2025DX, water, or steam2026Modro staters2027Heat Exchangers2028Centrifugal2329Procenting2020Gentrifugal2320Galvanized metal2021

APPENDIX B

Preliminary Energy Assessment Service Request Form Form# 50-852

STAR Transit		877-631-52	78
Public Entity Name		Telephone	2 - 1962)
Tommy Henricks		Executive D	irector
Contact Person		Title	
thenricks@STARtransit.org		Kaufman	
Email Address		County	020305438
500 Industrial Blvd.	Terrell	TX	75160
Street Address	City	State	ZIP Code
PO Box 703	Terrell	тх	75160
Mailing Address	City	State	ZIP Code

Preliminary Energy Assessment Service Eligibility

The State Energy Conservation Office (SECO) provides free preliminary energy assessments (PEAs) for existing public facilities and infrastructure. Eligible entities include municipal and county governments, public school districts, county hospitals, port authorities, major airports, public water authorities and municipally owned utilities. Leased or rented facilities and infrastructure are not eligible for this service.

Principles of Agreement

By submitting this request form, the entity listed above must agree to:

- select a contact person to work with SECO and its designated contractor to establish an energy policy and set realistic energy efficiency goals;
- allow SECO's designated contractor to provide walk-through assessments of selected facilities;
- schedule a time for SECO's designated contractor to make a presentation on the assessment findings to key decision-makers;
- · consider implementing the PEA's energy savings recommendations; and
- · allow SECO to post portions of this report on its website

Additional Questions

Has this organization used SECO's technical assistance or PEA services in the past? Is the primary contact for this PEA familiar with SECO's LoanSTAR revolving loan program? Has this organization used SECO's LoanSTAR revolving loan program in the past?

Yes ♥ No Yes ♥ No Yes ♥ No

Signature

This agreement must be signed by your organization's chief executive officer or other signing authority.

Date

Executive Director

Tommy Henricks
Print Name

Signature

Submit completed forms to SECO at seco.forms@cpa.texas.gov

or by mail to: State Energy Conservation Office Attn: SECO Program Manager 111 E. 17th Street Austin, TX 78711-1440

LeShawn Manus 10/11/21

50-852 (Rev.9-21/3)

APPENDIX C

Commissioned Systems	Maintenance Recommendations	Recommended Frequency (Days)
	General	
	Check for visible damage – proper insulation – air leaks	1-2 years
	Re balance airside system	3-5 years
Ductwork	Clean ductwork	3-5 years
Duction	Check fire and smoke dampers for corrosion, obstructions, operation (automated only), fusible links	1 – 3 years
	Chemically test/ treat closed and open HVAC loops for corrosion, fouling and scaling prevention	Continuous
Piping	Inspect corrosion coupons	Annually
, i ping	Check for leaks and physical damage and insulation integrity	Annually
	Perform closed loop balancing	3-5 years
	Exercise main and branch isolation and shutoff valves	Annually
	Test backflow prevention devices	Annually

AIRSIDE				
Air Handling Units				
	Inspect filters – Replace as necessary.	90 days		
Air Filters	Calibrate manometers and differential pressure transducers.	Annually		
	Check belt tension and condition if (applicable). Replace or re-tension as required.	Semi-Annual		
	Inspect & Clean	Semi-Annual		
Fans	Lubricate fan bearings	90 days		
	Inspect drive components (sheaves) for wear and proper alignment.	Semi-Annual		
	Inspect blower wheels – physical condition and cleanliness.	Semi-Annual		
	Check airside balancing (traverse with anemometer) and output performance.	5 years		
Motors	Inspect electrical connections and tighten as necessary.	Annually		
	Lubricate motor bearings	90 days		

	Check for proper function of all dampers (outside air,	Semi-Annual
	Ensure tight shut-off of dampers	Semi-Annual
Dampers	Lubricate all moving parts	Semi-Annual
	Ensure fusible links are not damaged, corroded or sprung	Annually
	Face & Bypass dampers are lubricated and tracking	Annually
Coils	Clean heating / cooling coils	As needed
	Clean and check condensate pans, drains and traps	Semi-Annual
	Inspect coils. Repair leaks, straighten damaged/bent coil fins etc	As needed
Values	Stroke heating/cooling valves to determine proper operation	Semi-Annual
valves	Check valves for leak- by and external leaks	Semi-Annual
	Exercise manual isolation valves	Annually
	Inspect piping for leaks	Formally @ 360 days - Informally at every visit
Piping/Fittings	Inspect piping insulation for damage	Formally @ 360 days - Informally at every visit
	Remove and clean strainers, upstream of coils	Annually
Ductwork	Inspect supply and return ductwork for cleanliness and air leaks	Annually
	Clean Ductwork	5 - year

Variable Ai	r Volume (VAV) Termin	al Units
	Check and calibrate the following components:	
	Flow meter	1-2 years
Variable Air Volume (VAV) Terminal Units	Supply air temperature sensor	1-2 years
	Zone thermostat	Annually
	Test operation through the BMS	1-2 years
	Perform periodic testing and balancing	Every (5) years
	Fans	
	Check belt tension and condition if (applicable). Replace or re-tension as required.	Semi-Annual
	Inspect & Clean	Annually
	Lubricate fan bearings	90 days
Fans	Inspect drive components (sheaves) for wear and proper alignment.	Semi-Annual
	Inspect blower wheels – physical condition and cleanliness.	Semi-Annual
	Check airside balancing (traverse with anemometer) and output performance	5 years

Buildin	g Automation System (B	AS)
	Maintain PC based hardware and	Continuous
	Maintain, update and backup software and firmware including front-end interface systems, subscriptions, licenses and hardware security keys.	Continuous
	Maintain graphics to accurately reflect site operating systems.	Continuous
	Establish and maintain system access security through hierarchical security level access log-in, and password protection protocols	Continuous
Building Automation System	Establish and maintain user level access login history logs through BMS inherent function and capabilities.	Continuous
	Establish and maintain security policies pertaining to user access level capabilities.	Continuous
	Ensure that monitors do not display persistent data that can cause image "burn- in"	Continuous
	Establish and maintain alarm level management. Distinction between trouble and critical alarms.	Continuous
	Update systems periodically with manufacturer recommended software patches, bug fixes and upgrades that enhance and maintain functionality.	Continuous
	Maintain updated electronic media database system backups at a remote site for loss prevention purposes.	Continuous

APPENDIX D

NORESCO Sustainability Services

LoanSTAR Application RFA# BE-G24-2022 State Energy Conservation Office **PART 1: General Information** Borrower Name of Eligible Public Entity Federal Tax ID Application Dat Mailing Address City Stat ZIP Code Ś County Name Total Amount Requested Signing Authority Name Title Telephone Email Adduse Primary Contact (Project Director) Man Titl Telephone Email Address Secondary Contact (Energy Manager) Title Name Telephone Email Address Administrative Contact for Accounting (Financial Contact) Name Title Mailing Address City ZIP Code State Telephone Email Address

PART 2: Documentation Submitted with Application

Place a check next to the documentation submitted with the application. One (I) electronic copy of the report is required. Reports must comply with SECO guidelines. See attachments for Project Assessment Commitment and Memorandum of Understanding forms.

Utility Assessment Report (UAR) – for design-bid-build projects, design-build projects or Energy Savings Performance Contracts (ESPCs)

Commissioning Report - for Retro- or Re-Commissioning projects

Preliminary Energy Assessment (PEA) and Memorandum of Understanding (MOU) – a UAR is required to be completed within 140 calendar days of execution of the MOU.

Project Assessment Commitment and Memorandum of Understanding See attachments for Project Assessment Commitment and Memorandum of Understanding forms- a UAR is required to be completed within 140 calendar days of execution of the MOU.

If UAR cannot be completed within 140 calendar days after notice is received that funding is committed to the project, do not proceed. The project is disqualified from loan consideration.

50-831 (10-21/12)

SECO

PART 3: Project Information

Complete the following table listing all Utility Cost Reduction Measures (UCRMs). Use Attachment A - Project Financial Worksheets to calculate energy savings.

Facility Name	Address	City	State	ZIP Code
Engineering Firm Name	Address	City	State	ZIP Code

Date of Audit Report

UCRM NO.	BUILDING	UCRM DESCRIPTION
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		

How long will it take to complete the project? (months)	
A. Is the TOTAL LOAN simple payback for the UCRMs less than 15 years?	Yes No
If Yes, proceed to next question	
If No, project is disqualified from further loan consideration.	
B. Is the simple payback for each UCRM less than the Estimated Useful Life of the UCRM?	Yes No
If No, project is disqualified from further loan consideration.	

Page 2 • 50-831 (10-21/12)

PART 4: Funding Source

The LoanSTAR program has two funding sources. The interest rate for a LoanSTAR general fund loan is 2% per annum. The interest rate for a LoanSTAR repaid ARRA fund loan is 1% per annum, but requires additional reporting documentation.

What is your preferred funding source?

- 2% LoanSTAR general fund loan (no minimum loan size; maximum loan size is \$8,000,000)
- 1% LoanSTAR repaid ARRA fund loan (minimum loan size is \$3,000,000; maximum loan size is \$8,000,000)
- No preference
- Undecided

PART 5: Certification by Applicant Signing Authority or Chief Financial Officer

I certify that I have reviewed this application, including commitment of "buy-down" funds. The information provided is accurate to the best of my knowledge and in my best professional judgment. If awarded, Borrower will comply with the terms and conditions of the Sample Loan Agreement.

Signature	Date
Printed Name	Title

Page 3 • 50-851 (10-21/12)

Attachment A – Project Financial Calculation Worksheet (Required)

Attachment A1. Design-Bid-Build, Design-Build or Commissioning Project Calculation Worksheet

			Construction		Costs (\$)		Estimated		UCRM Estimated	
UCRM No.	Building	UCRM Description	Time (Months)	Eng./Design	Construction	Total	Annual Saving (\$)*	Payback** (yrs)	Useful Life (yrs)	
					Totals					

* HVAC savings degradation = 0.75% each year.

** Individual energy efficiency measure payback must be less than or equal to the estimated useful life of the measure.

TOTAL LOAN AMOUNT

Costs for the UAR, metering and monitoring may be included in the loan at Borrower's option.

Page 4 • 50-851 (10-21/12)

				Avera	ge Annual Sa	wings*				Estimated	
UCRM No.	UCRM Title	Electric Energy (kWh/yr)	Demand (kW/yr)	Electric (\$/yr)	Natural Gas (Mcf/yr)	Natural Gas (\$/yr)	Water (kGal/yr)	Water (\$/yr)	Project Cost (\$)	Payback** (yrs.)	Project Useful Life (yrs.)
1											
2											
3											
4											
5											
6											
7											
8											
Utility	y Assessment Report Cost	-					-			-	
Initial Verifi	Measurement &	-					-			-	
Construction Bonding Cost		-					-			-	
Owne Mana Other	er's Administration, gement, Training & r Costs	-					-			-	
Buy l	Down***	-					-			-	
TOT (IMP) TOT (Simp	AL LOAN AMOUNT LEMENTATION AL) de Payback)										
Requi Servie	Required Ongoing Monitoring Service Cost						-			-	
Guar	anteed Rebate Savings	-					-			-	
Finan	icing Cost	-					-			-	
TOTAL PROJECT PAYBACK (Project Payback)		-					-				

Attachment A2. Energy Savings Performance Contract (ESPC) Project Calculation Worksheet

* HVAC savings degradation = 0.75% each year.

** Individual energy efficiency measure payback must be less than or equal to the estimated useful life of the measure.

*** Maximum Buy Down on an individual UCRM must not exceed 50% of the total UCRM cost.

Page 5 • 50-851 (10-21/12)

Attachment B- Project Assessment Commitment

Attachment B is not required when a Utility Assessment Report (UAR), Commissioning Report or Preliminary Emergy Andit is submitted with the application. Applicant requests LoanSTAR Funding be reserved for a proposed energy efficiency or commissioning project. The dollar amount requested is Applicant's estimated cost to analyze and implement energy efficiency projects that will be financed through the LoanSTAR Program. LoanSTAR funds, if reserved, will be subject to the following conditions:

- Applicant agrees to retain a Professional Engineer (PE), licensed in the State of Texas, to prepare a Commissioning Report or UAR that complies with the LoanSTAR Technical Guidelines or with Performance Contracting Guidelines. The PE shall meet the technical analyst qualifications listed in Volume I, Section I, Paragraph C of the LoanSTAR Technical Guidebook. The PE of record shall accept responsibility for implementation of all retrofit activities in the UAR.
- 2. Applicant agrees to complete a UAR for design-bid-build or design-build contracts or a Commissioning Report for commissioning projects within 140 days after the execution of the Memorandum of Understanding. Borrower also agrees to submit one (1) electronic copy of the completed Commissioning Report or UAR to the State Energy Conservation Office(SECO). If the UAR is not received by SECO by the "End Date for Commitment", the reserved LoanSTAR funding will be released to other prospective borrowers.
- 3. LoanSTAR project expenditures cannot be incurred before the effective date cited in a fully executed loan agreement. The sole function of a Project Assessment Commitment is to request reservation of LoanSTAR Funding for a Borrower during the period the Commissioning Report or UAR are being prepared. This document shall not be construed as a loan agreement and does not authorize the expenditure of LoanSTAR Funding.

Page 6 + 50-851 (10-21/12

Attachment C- Memorandum of Understanding (MOU)

Attachment C is not required when a Utility Assessment Report (UAR) or Commissioning Report is submitted with the application.

Execution of this MOU reserves the requested amount of LoanSTAR Funding for the Applicant.

The reserved LoanSTAR Funding is Applicant's estimated cost based on the Preliminary Energy Assessment or Project Assessment Commitment to analyze and implement energy efficiency projects which will be financed through the LoanSTAR Program.

The LoanSTAR funds reserved will be subject to the following conditions:

- Applicant's Signing Authority certifies that Applicant has retained a Professional Engineer (PE) to prepare a UAR. The PE of record shall accept responsibility for implementation of all retrofit activities in the UAR. The UAR shall be prepared in accordance with the LoanSTAR Technical Guidelines.
- Applicant's Signing Authority certifies that one (1) electronic copy of the completed reports referenced in item 1 will be delivered to SECO for review. If the completed reports are not submitted by the "End Date for Commitment", the reserved LoanSTAR Funding will be released to other prospective borrowers.
- 3. The sole purpose of this MOU is to reserve LoanSTAR Funding for the Applicant during the period that its UAR is being prepared. This MOU shall not be construed as a loan agreement. It does not authorize the expenditure of LoanSTAR Funding. LoanSTAR project expenditures cannot be incurred before the effective date cited in a fully executed loan agreement.

Applicant
\$
Amount Requested
Name of Public Entity (printed)
Name of Signing Authority (printed)
Trie
Signature
Date
State Energy Conservation Office To be completed by SECO
SECO Program Manager Name (printed)
SECO Program Manager Signature

End Date for Commitment (Commitments cannot be extended.)

Page 7 + 50-831 (10-21/12

Date